1,331 research outputs found

    In vitro and in vivo studies on the structural organization of Chs3 from Saccharomyces cerevisiae

    Get PDF
    Citation: Gohlke, S., Muthukrishnan, S., & Merzendorfer, H. (2017). In vitro and in vivo studies on the structural organization of Chs3 from Saccharomyces cerevisiae. International Journal of Molecular Sciences, 18(4). doi:10.3390/ijms18040702Chitin biosynthesis in yeast is accomplished by three chitin synthases (Chs) termed Chs1, Chs2 and Chs3, of which the latter accounts for most of the chitin deposited within the cell wall. While the overall structures of Chs1 and Chs2 are similar to those of other chitin synthases from fungi and arthropods, Chs3 lacks some of the C-terminal transmembrane helices raising questions regarding its structure and topology. To fill this gap of knowledge, we performed bioinformatic analyses and protease protection assays that revealed significant information about the catalytic domain, the chitin-translocating channel and the interfacial helices in between. In particular, we identified an amphipathic, crescent-shaped α-helix attached to the inner side of the membrane that presumably controls the channel entrance and a finger helix pushing the polymer into the channel. Evidence has accumulated in the past years that chitin synthases form oligomeric complexes, which may be necessary for the formation of chitin nanofibrils. However, the functional significance for living yeast cells has remained elusive. To test Chs3 oligomerization in vivo, we used bimolecular fluorescence complementation. We detected oligomeric complexes at the bud neck, the lateral plasma membrane, and in membranes of Golgi vesicles, and analyzed their transport route using various trafficking mutants. © 2017 by the authors. Licensee MDPI, Basel, Switzerland

    Man vs. machine: comparison of pharmacogenetic expert counselling with a clinical medication support system in a study with 200 genotyped patients

    Get PDF
    Background: Medication problems such as strong side effects or inefficacy occur frequently. At our university hospital, a consultation group of specialists takes care of patients suffering from medication problems. Nevertheless, the counselling of poly-treated patients is complex, as it requires the consideration of a large network of interactions between drugs and their targets, their metabolizing enzymes, and their transporters, etc. Purpose This study aims to check whether a score-based decision-support system (1) reduces the time and effort and (2) suggests solutions at the same quality level. Patients and methods: A total of 200 multimorbid, poly-treated patients with medication problems were included. All patients were considered twice: manually, as clinically established, and using the Drug-PIN decision-support system. Besides diagnoses, lab data (kidney, liver), phenotype (age, gender, BMI, habits), and genotype (genetic variants with actionable clinical evidence I or IIa) were considered, to eliminate potentially inappropriate medications and to select individually favourable drugs from existing medication classes. The algorithm is connected to automatically updated knowledge resources to provide reproducible up-to-date decision support. Results: The average turnaround time for manual poly-therapy counselling per patient ranges from 3 to 6 working hours, while it can be reduced to ten minutes using Drug-PIN. At the same time, the results of the novel computerized approach coincide with the manual approach at a level of > 90%. The holistic medication score can be used to find favourable drugs within a class of drugs and also to judge the severity of medication problems, to identify critical cases early and automatically. Conclusion: With the computerized version of this approach, it became possible to score all combinations of all alternative drugs from each class of drugs administered ("personalized medication landscape ") and to identify critical patients even before problems are reported ("medication alert"). Careful comparison of manual and score-based results shows that the incomplete manual consideration of genetic specialties and pharmacokinetic conflicts is responsible for most of the (minor) deviations between the two approaches. The meaning of the reduction of working time for experts by about 2 orders of magnitude should not be underestimated, as it enables practical application of personalized medicine in clinical routine

    Chalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides

    Get PDF
    Weeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2′,3′,4′,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2′,3′,4′-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15–45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme

    Structure of an Hsp90-Cdc37-Cdk4 complex

    Get PDF
    Activation of many protein kinases depends on their interaction with the Hsp90 molecular chaperone system. Recruitment of protein kinase clients to the Hsp90 chaperone system is mediated by the cochaperone adaptor protein Cdc37, which acts as a scaffold, simultaneously binding protein kinases and Hsp90. We have now expressed and purified an Hsp90-Cdc37-Cdk4 complex, defined its stoichiometry, and determined its 3D structure by single-particle electron microscopy. Comparison with the crystal structure of Hsp90 allows us to identify the locations of Cdc37 and Cdk4 in the complex and suggests a mechanism by which conformational changes in the kinase are coupled to the Hsp90 ATPase cycle

    Prevention and Intervention Studies with Telmisartan, Ramipril and Their Combination in Different Rat Stroke Models

    Get PDF
    The effects of AT1 receptor blocker, telmisartan, and the ACE inhibitor, ramipril, were tested head-to head and in combination on stroke prevention in hypertensive rats and on potential neuroprotection in acute cerebral ischemia in normotensive rats. Normotensive Wistar rats were treated s.c. 5 days prior to middle cerebral artery occlusion (MCAO) for 90 min with reperfusion. Groups (n = 10 each): (1) sham, (2) vehicle (V; 0,9% NaCl), (3) T (0,5 mg/kg once daily), (4) R (0,01 mg/kg twice daily), (5) R (0,1 mg/kg twice daily) or (6) T (0,5 mg/kg once daily) plus R (0,01 mg/kg twice daily). Twenty-four and 48 h after MCAO, neurological outcome (NO) was determined. Forty-eight h after MCAO, infarct volume by MRI, neuronal survival, inflammation factors and neurotrophin receptor (TrkB) were analysed.Stroke incidence was reduced, survival was prolonged and neurological outcome was improved in all treated SHR-SP with no differences between treated groups. In the acute intervention study, T and T+R, but not R alone, improved NO, reduced infarct volume, inflammation (TNFα), and induced TrkB receptor and neuronal survival in comparison to V.T, R or T+R had similar beneficial effects on stroke incidence and NO in hypertensive rats, confirming BP reduction as determinant factor in stroke prevention. In contrast, T and T+R provided superior neuroprotection in comparison to R alone in normotensive rats with induced cerebral ischemia

    Strategies for validation and testing of DNA methylation biomarkers

    Get PDF
    DNA methylation is a stable covalent epigenetic modification of primarily CpG dinucleotides that has recently gained considerable attention for its use as a biomarker in different clinical settings, including disease diagnosis, prognosis and therapeutic response prediction. Although the advent of genome-wide DNA methylation profiling in primary disease tissue has provided a manifold resource for biomarker development, only a tiny fraction of DNA methylation-based assays have reached clinical testing. Here, we provide a critical overview of different analytical methods that are suitable for biomarker validation, including general study design considerations, which might help to streamline epigenetic marker development. Furthermore, we highlight some of the recent marker validation studies and established markers that are currently commercially available for assisting in clinical management of different cancers

    Mechanisms of tauroursodeoxycholate-mediated inhibition of apoptosis

    Full text link
    • …
    corecore